
Distributed Mission Operations with the Multi-mission
Encrypted Communication System1

Robert C. Steinke, Paul G. Backes, Jeffrey S. Norris

{Robert.C.Steinke, Paul.G.Backes, Jeffrey.S.Norris}@jpl.nasa.gov
Jet Propulsion Laboratory

4800 Oak Grove Drive
Pasadena, CA 91109-8099

0-7803-7231-X/01/$10.00/© 2002 IEEE

Abstract— The traditional model of mission operations is
centralized with all activities taking place at a single
location. The Multi-mission Encrypted Communication
System (MECS) is a tool for enabling distributed operations
where scientists and engineers at several locations
collaborate over the Internet to perform mission operations
activities. There are many reasons why distributed
operations are desirable. Travel and facilities costs can be
reduced. Disruption can also be reduced both at the mission
operations facility which no longer has to house remote
participants, and in the lives of remote participants who no
longer have to leave their homes for weeks at a time.
Finally, the level of participation can be increased leading to
greater return from a mission.

The MECS architecture is centered around maintaining
cached file replicas in a consistent state on remote
machines. Challenges that are addressed by MECS include
security, compatibility with legacy applications, clients that
disconnect and reconnect to the network frequently, and
user interface issues involved in keeping users informed
when files are created or modified. This paper discusses
MECS’ architecture for distributed operations and lessons
learned from a field test in May 2001.

 TABLE OF CONTENTS

 1. INTRODUCTION
 2. MECS’ REQUIREMENTS
 3. MECS’ DESIGN
 4. LESSONS LEARNED AND CONCLUSION

 1. INTRODUCTION
Distributed mission operations is the concept of multiple
participants at different physical locations collaborating to
control a single spacecraft. Distributed operations are
contrasted with the traditional centralized mission control
room. Distributed operations have distinct advantages over
centralized. Mission participants typically fall into two
categories, engineers from the organization that launched
the spacecraft, and scientists from universities and
laboratories around the world. Centralized operations
require that all the scientists converge on the engineers’
facilities during mission operations.

This causes numerous problems. First, there is an enormous
facilities burden on the mission operations site. The site
normally supports only the engineers during spacecraft
development, but must support engineers plus scientists
during mission operations. The facilities will either be too
small during operations, or mostly unused during
development. There is also a financial burden of
transporting scientists from their home institutions, and a
personal burden on the scientists who must be away from
their homes and families for weeks at a time. To relieve the
personal burden scientists often work in shifts working for
two weeks and then going home for two weeks. During the
time at home they fall behind and need to catch up on what
happened when they return. All of these problems can be
ameliorated by distributed operations even in a limited
form.

One result of these problems is to limit the number of
people able to participate in a mission. Certain tasks such
as data analysis are easily parallelized if enough people can
have access to the data. With distributed operations, we
imagine armies of graduate students sifting through data to
find the needle in the haystack early enough for that
information to be used to plan the spacecraft’s next moves.

The concept of data distribution over the internet is not new,
but until now it has not been applied to the application of
mission operations. Remote participation in mission
operations at JPL is also not new, but until now required
installation of special hardware at the remote site called a
Science Operations Planning Computer (SOPC) and leased
data lines to JPL. Essentially, the remote computer was
directly connected to the local area network of the mission
operations site by a very long wire. This technique is very
expensive which restricts its use to a few critical
participants. It is also not mobile which we believe is one
of the primary drivers for distributed operations.

The Multi-mission Encrypted Communication System
(MECS) is being developed at JPL to support ubiquitous
distributed operations on any computer that can run Java
and connect to the Internet. This instantly includes a large
number of mobile devices. MECS is also being designed to
allow disconnected operation by caching mission database
files on the user’s machine. Currently, MECS is a work in

progress. In this paper we distinguish between the
requirements we placed on MECS, the design to fulfill those
requirements, and we point out those parts of the design that
we have not yet implemented.

 2. MECS’ REQUIREMENTS
The primary goal of MECS is to enable distributed mission
operations using only COTS hardware and the Internet as a
communications medium. After initial security tasks to
authorize a remote participant, adding a remote mission
operations site should consist simply of downloading and
installing the MECS software on any computer that the
remote participant happens to be using.

MECS also needs to run with minimal supervision from
system administrators. The result of these requirements is a
nearly zero per-user marginal cost for promoting a
centralized participant to a remote participant. Along with
the travel and facilities cost savings, this should allow
missions to increase their total number of participants which
results in a greater number of person hours spent analyzing
data during the critical time between downlink and the
following uplink. A more detailed breakdown of some
significant requirements is shown below:

1. Distributed read-write access to a mission
database over the internet

2. Security
a. Only authentic writes from authorized

users shall be allowed to modify mission
data

b. Reads by authorized users shall return
authentic mission data

c. Reads by unauthorized users shall not be
allowed to access mission data

d. Easily revocable access control on a user
by user, file by file granularity

3. Reliability
a. Support for operations while disconnected

from the Internet
b. Previous mission database states

recoverable
c. Audit trail for writes
d. Causal consistency enforced, concurrent

writes detected
4. Efficiency

a. Limit disk space on remote machine to
specified allocation

b. Scalable in number of users and size of
mission database

c. Load on remote machine should scale
with number of files cached, and not
number available to be cached

5. Usability
a. Compatible with legacy applications

manipulating mission data

The focus of MECS is to provide remote access to a mission
database so that standard mission operations tools can be
used in a distributed fashion. Initially, MECS is being
designed to support primarily data analysis tools being used
remotely. Data analysis is a read dominated workload and
so is well suited for distributed operations. We also feel
that other applications such as spacecraft commanding
require greater security so acceptance of distributed
operations will be slower.

Many current data analysis tools need only to access the
mission database as a set of files. Their workload is read
dominated although occasionally processed data needs to be
written. Therefore, one of our initial decisions was that
MECS should maintain a cached replica of the mission
database on the remote user’s file system. MECS monitors
these files, and when one is changed by the user or an
application program the new version is committed to the
master database as soon as network connectivity allows.
This supports compatibility with legacy applications and
disconnected operations.

Disconnected operations are important because during
centralized mission operations participants spend a
significant amount of time traveling to and from the mission
operations site. With disconnected operations they may
spend this time analyzing mission data. We do not expect
distributed operations to instantly replace centralized
operations, and during the adoption period we expect
mobile, disconnected operations to be one of the primary
benefits of this new technology. For example, a scientist
spends a few weeks at his or her home institution. During
this time, the scientist’s laptop keeps the mission database
up to date any time it is plugged in to the internet. When
the scientist travels back to the central mission operations
site he or she can spend the travel time catching up, and be
ready to go the instant he or she arrives.

An overriding concern with mission operations over the
Internet is security. MECS addresses four security
concerns. First, it must not be possible to impersonate a user
and perform unauthorized modification of the mission
database (requirement 2a.) Second, it must not be possible
to impersonate the mission database and send to a user
invalid data which the user believes to be authentic
(requirement 2b.) Third, it must not be possible to
impersonate a user or intercept data streams to perform
unauthorized reads of the mission database (requirement
2c.) All three of these can be satisfied by implementing
appropriate authentication, access control, and encryption.
Fourth, access control must be fine grained and easily
revocable in case a security breach is detected (requirement
2d.)

 3. MECS’ Design

The architecture of MECS is based on a client-server
architecture, and is shown in Figure 1. This architecture
helps to fulfill several requirements. Security is fulfilled
with NASA’s Public Key Infrastructure[4] (NASA PKI) for
authentication, triple DES EDE3[5] for encryption, and all
access control decisions are made at the server behind the
mission firewall after authentication. Having a centralized
server makes access control easily revocable as opposed to,
for example, a peer to peer protocol where access control
decisions might be made by clients outside the mission
firewall.

The server stores a copy of the mission database in version
controlled form[2, 3]. This is represented by multiple
copies of each file in the figure This fulfills the
requirements of recoverability and auditability. It also
provides support for disconnected operations and
concurrent editing by remote participants as we shall show.
 Each client has a subscription specifying the set of files it is
interested in caching. Not every user will be interested in
the entire database, and subscriptions allow the user to limit
disk usage on their local machine. A user can request a
specific version of a file, subscribe to receive the newest
version of a file, or subscribe to receive any new files
created in a specific directory.

Behind the mission firewall, the original mission database
remains and is monitored by a MECS client. Any new or

modified files in the mission database are committed to the
MECS server. This allows traditional, centralized mission
operations to proceed exactly as before. MECS is not
critical to the functioning of the system. MECS can even be
switched off without affecting operations behind the
firewall. In addition, MECS adds recoverability and
auditability without any changes to existing mission
operations tools. MECS can be configured to update files in
the mission database when remote users commit changes or
leave the mission database in its original state.

MECS uses three protocols for communication between
clients and the server. All three use either TCP/IP or UDP
and are implemented with Java sockets. The three protocols
correspond to three actions that can take place within the
system. The first protocol is the Subscription Protocol. For
each client, the server stores a subscription specifying the
files for which a client is interested in receiving updates.
The Subscription Protocol allows a client to change its
subscription. The second protocol is the Commit Protocol.
When a file is created or modified in a directory monitored
by a client that client commits the change to the server. The
third protocol is the Update Protocol. When a change is
committed to the server it must be propagated to all other
subscribed clients. This is handled by the Update Protocol.
 Details of the three protocols are given below.

Mission DB

MECS DB
(versioned) MECS

Server

MECS
Client

MECS DB
(cached) MECS

Client

MECS DB
(cached) MECS

Client

Application
Application

Application Application
Application

Mission
Firewall

A B

B

A

A B
B A

Figure 1 - MECS Architecture

Subscription Protocol

In MECS, a subscription is defined as a set of files. The
files in this set may or may not exist. For example, the
specification “all of the files in directory foo” is taken to
include an infinite number of files that don’t exist, but could
be created in the directory foo. A client with this
subscription would receive an update if a file were created
in foo. For each client, there are three important sets:

A The set of files to which a client has read access
S The set of files to which a client is subscribed
U The set of files which have changed since the client

was last updated

Files in the set ⌐A should never be sent to the client, and the
set ⌐A ∩ S should always be empty. The set A ∩ S ∩ U
consists of files that the client needs updated. Files in the
set A ∩ ⌐S are files the client may need if the client changes
its subscription. The Subscription Protocol proceeds as
follows:

1. The client opens a TCP connection to the server
and sends the new subscription as a delta
containing only changes from the old subscription.

2. The server applies the subscription change and
sends the latest version numbers of all files in A ∩
⌐oldS ∩ newS. The client then requests those files
for which it does not have the latest version.

3. If the server times out or receives invalid data the
server aborts the protocol

4. If the client times out waiting for a response from
the server it does not know whether its subscription
was changed. Therefore, it must initiate a
subscription repair protocol which is exactly like
the subscription change protocol except that the
client sends the entire subscription, not just a delta,
and indicates that the server should use the empty
set for oldS

In step 2, the server only sends version numbers because if
the client is performing the subscription repair protocol the
client will already have many of the files it needs.

Currently, we implement sets as simple lists of files and
directories which are in the set. All files in a listed
directory are assumed to be in the set. However, a more
general form of these sets can be implemented efficiently as
decision trees based on the directory hierarchy. The root of
the tree specifies a file or directory included in the set. If it
is a directory all of its descendants are assumed to be in the
set, except that second level nodes specify descendants not
included in the set. Third level nodes specify descendants
of those descendants to include, and so forth. The status of
a descendant not specifically mentioned is the status of its
closest ancestor in the tree. A forest of these decision trees
constitutes a set. With this implementation, a set containing
all the descendents of a single directory is a one line

specification, and we feel that the most often used sets will
be very compact.

Scalability issues can be handled by having classes of users
who all share the same subscription. For example, a public
outreach program may have millions of users following
along with a mission from their personal computers
receiving data through MECS rather then from a web
server. All of these users can be given the same
subscription.

Commit Protocol

A commit creates a new version of a file in the server
database. Any clients subscribed to that file will
subsequently be updated with the new version via the
Update Protocol. The Commit Protocol proceeds as
follows:

1. The client opens a TCP connection to the server
and sends a request for an Update Unique
IDentifier (UUID)

2. The server responds with a UUID
3. The client sends the commit as its parent version in

the version control graph and a delta containing
only changes from that parent version. The client
remembers the UUID in case the Commit Protocol
fails.

4. The server applies the commit. If the parent
version is the last version on its branch then the
commit becomes a new revision on that branch.
Otherwise, the commit becomes a new branch.

5. The server responds to the client that the commit
succeeded, and includes the version number
assigned to the commit.

6. If the server times out or receives invalid data the
server aborts the protocol.

7. If the client times out waiting for a response from
the server it does not know if the commit was
applied. Therefore, the client must retry the
commit protocol with the old UUID instead of
requesting a new UUID. If the original commit
succeeded the server will recognize the matching
UUIDs and not apply the commit twice.

There are several important issues in implementing the
commit protocol. We wish to transmit file deltas instead of
entire files for efficiency. This means that it is important to
enforce the condition that an update is applied at most once
because the operation is not idempotent. It is also desirable
to enforce the condition that the operation is applied at least
once so that changes will not be lost. The given protocol
does enforce at most once semantics, and if a client is
diligent in retrying until the commit succeeds it enforces at
least once semantics as well.

Another issue in transmitting deltas is the calculation of the
deltas themselves. Directly comparing the file on the client

with the file on the server would be as costly as transmitting
the entire file from the client. An efficient algorithm using
checksums to identify identical portions of two files over a
network has been developed and integrated into the rsync
program[1]. Of course, a brute force method exists by
keeping two copies of each file on the client, one write
protected, the other for the user to modify. A more efficient
variation of this would be a file system with copy on write
semantics where a single copy each disk block is kept until
it is modified and then two copies are made. Many
operating systems support copy on write semantics for
memory, but we are unaware of any file system which
supports it. We currently have not implemented
transmitting deltas, and send entire files instead.

A third issue is enforcement of causal consistency. Since
we allow disconnected operations it is entirely possible that
two disconnected users could modify the same file in
different ways at the same time. When these users
reconnect, if one file were to overwrite the other then
someone’s work would be lost. This is an example of
causally concurrent operations. When one performs a read
then everything one does after that could have been caused
by that read so the events are termed causally related. Two
events that are not causally related are concurrent. It is
invalid for one version to supercede a concurrent version, or
lost updates can occur. We deal with this problem with the
version control technique of branching. Two versions are
causally related if and only if one is an ancestor of the other
in the version control graph. There is also the problem of
merging versions once a branch occurs. This is a very
application specific problem because the correct actions will
depend on what kind of data is stored in the file. We
currently rely on system administrators to perform manual
merging, but in the future we imagine plug-in modules
specifying merging behaviors for particular file types.

There is a final problem with determining the parent version
of a commit. MECS will always know the latest version it
updated to the client, but the danger exists that an
application program may bring the contents of a file into
memory, hold them there while MECS updates a new
version, and then write a modified old version of the file
over the new version. This version should report the old
version as its parent version, or causal consistency may not
be enforced. We have not yet solved this problem.
Solutions exist which require the cooperation of either users
or applications, but this is less desirable because of our
philosophy that MECS should be invisible to the user and
compatible with legacy applications.

Update Protocol

When changes are committed to the server database, they
must be propagated to subscribed clients. This is
accomplished with the Update Protocol. The Update
Protocol is an adaptation of a gossip protocol[6]. We chose
this method because gossip protocols are very fault tolerant

and reliable in the face of network disconnection, and we
wish to support disconnected operation. A gossip protocol
proceeds as follows. One host contacts another with
information describing the messages it has received. The
second host can deduce what messages it has received that
the first host hasn’t, and these messages are sent back to the
first host. These pair-wise communications are repeated
between random pairs of hosts until, eventually, all hosts
receive all messages. Gossip protocols are traditionally peer
to peer and require transmitting vector timestamps of size
O(N), where N is the number of gossiping hosts, to indicate
what messages a host has received. However, for security
considerations, we have already disallowed peer to peer
contact. One result of this is that all commits can be placed
in a log at the server, and the log index, an O(1) timestamp,
can be used to indicate what commits a client has received.
The Update Protocol proceeds as follows:

1. Periodically, the client sends to the server a
heartbeat message consisting of a single UDP
packet containing the client’s identity and the latest
log index known to the client.

2. When the server receives a heartbeat message it
checks the log index in the message against the
size of the log. If records have been added to the
log since the client’s log index then the set U is
non-empty and the server checks U against the
client’s subscription, S.

3. If U is empty the server does nothing as the client
is up to date. The server can occasionally respond
with a heartbeat message to the client so that the
client can detect disconnection.

4. If U is non-empty then the server makes a TCP
connection to the client and sends all the files in U
∩ S, which may be empty, and the new highest log
index.

5. In the event of any failure, both the server and
client can abort and take no action. The client will
eventually send another heartbeat with the same
log index as before which is equivalent to retrying
the protocol.

The first question we must address is why we use a polling
algorithm when we could use a push based algorithm. After
all, the server knows of both the commits and client
subscriptions. Since we wish to deal with disconnected
operations, we already need to detect disconnection which
requires some form of heartbeat message. Since our polling
information can fit in a single UDP packet it is no less
efficient than disconnection detection. Furthermore, if the
update protocol fails there must be some mechanism for
remembering which updates have failed and retrying. We
will have a single server and many clients so for scalability
we wish this responsibility to fall on the clients. The
protocol is also simplified by the fact that the first try and a
retry require exactly the same actions.

There is another beneficial effect of this polling mechanism
in the area of scalability. We expect most commits to come
in large batches such as a downlink from a spacecraft. After
this large commit there will be a period of peak server load
followed by a period of very low server load. To increase
the number of clients it is only necessary to reduce the
frequency with which they send polling requests. The
number of requests the server receives per unit time remains
fixed while the duration of the period of peak load
increases. Essentially, with fixed server peak load this
algorithm supports a linear tradeoff between number of
clients and average client latency in receiving updates.

 4. LESSONS LEARNED AND CONCLUSION
From April 30th through May 11th, 2001 JPL conducted a
blind field test of Mars rover mission operations to test
several new technologies including MECS. The
experimental Field Integrated Design and Operations
(FIDO) rover[7] was placed at an unknown location which
mission participants had to explore using only the rover’s
own capabilities. MECS was used to distribute data to a
number of clients including Linux computers at the mission
operations site that were not integrated with the local
network file system, remote Sun workstations, and laptops
running Microsoft Windows.

Twenty four days of operations were simulated over the
twelve day field test, and MECS delivered all twenty four
days of mission data without major incident. From this
experience we feel confident in our claim that MECS will
have a near zero per user cost. On the other hand, remote
operations will make certain aspects of interpersonal
communication more difficult.

To illustrate this point, a NASA administrator had
expressed interest in seeing a demonstration of MECS, and
had been given instructions before the field test on how to
install and run MECS. During the test we became
concerned when we had not heard from him thinking he had
lost interest. We found out only later that he had been
running MECS the whole time following along with the
field test, and we were completely unaware of him.

So the first important lesson we learned is that with remote
operations inter-personal communication will be a
significant issue. Perhaps as significant as data
communication. The ability to attract other people’s
attention in order to express an opinion should not be taken
for granted. We are currently looking to groupware
research for solutions.

Another issue is that while MECS can invisibly deliver the
latest version of a file, there must be provisions for users to
keep track of what files they have seen and what files are
new. Often, measurements taken on the same day were
downlinked on different days due to data volume
constraints. There was no simple scheme for finding all of

the new files. A primitive solution that we constructed
during the field test was to display lists of files modified by
each MECS update. This helped, but was not enough to be
an acceptable solution.

Finally, we discovered the prevalence of firewalls in
computer networks today. The last two days of the field test
consisted of a public outreach demonstration involving
several high schools. In order to use MECS to transmit data
to these schools we had to deal with their firewall
configuration and institutional policies for network security.
We were not expecting to encounter this when dealing with
a non-technical organization, but we certainly should have
been.

 REFERENCES
[1] Andrew Tridgell and Paul Mackerras, “The rsync Algorithm”,
http://rsync.samba.org/rsync/tech_report.

[2] Marc J. Rochkind, “The Source Code Control System”, IEEE
Transactions on Software Engineering, Vol. SE-1, No. 4,
December 1975, pp. 364-370.

[3] Walter F. Tichy, “RCS—A System for Version Control”,
Software—Practice and Experience, Vol. 15, No. 7, July 1985,
pp. 637-654.

[4] NASA PKI home page, http://pki.nasa.gov.

[5] W. Tuchman, “Hellman Presents No Shortcut Solutions to
DES”, IEEE Spectrum, Vol. 16, No. 7, July 1979, pp. 40-41.

[6] Andrzej Pelc, “Fault-tolerant Broadcasting and Gossiping in
communication Networks”, Networks, Vol. 28, No. 3, 1996, pp.
143-156.

[7] FIDO home page, http://fido.jpl.nasa.gov.

Robert Steinke is a computer scientist
and member of the technical staff of
the Autonomy and Control Section at
the Jet Propulsion Laboratory. At JPL,
his work is focused in the areas of
distributed operations for Mars rovers
and landers, secure data distribution,
distributed data consistency, and communication support
for group collaboration. He received his B.S. in 1995 and
M.S in 1997 in Computer Science from U.C. Santa Barbara,
and his Ph.D. in 2001 in Computer Science from the
University of Colorado at Boulder. As a graduate student
he completed his Master’s thesis on a serializable lazy
update scheme for distributed databases, and his
dissertation on distributed shared memory consistency
models, and received a graduate teacher certificate from
Boulder for his training and work as an instructor. He now
lives in Pasadena with his wife Mollie and daughter
Adelaide.

Paul Backes is a technical group leader in
the Autonomy and Control Section at the Jet
Propulsion Laboratory, Pasadena, CA,
where he has been since 1987. He received
the BSME degree from U.C. Berkeley in
1982, and MSME in 1984 and Ph.D. in
1987 in Mechanical Engineering from
Purdue University. He is currently responsible for
distributed operations research for Mars lander and rover
missions at JPL. Dr. Backes received the 1993 NASA
Exceptional Engineering Achievement Medal for his
contributions to space telerobotics (one of thirteen
throughout NASA), 1993 Space Station Award of Merit,
Best Paper Award at the 1994 World Automation Congress,
1995 JPL Technology and Applications Program
Exceptional Service Award, 1998 JPL Award for Excellence
and 1998 Sole Runner-up NASA Software of the Year
Award. He has served as an Associate Editor of the IEEE
Robotics and Automation Society Magazine.

Jeff Norris is a computer scientist and
member of the technical staff of the
Autonomy and Control Section at the Jet
Propulsion Laboratory. At JPL, his
work is focused in the areas of
distributed operations for Mars rovers
and landers, secure data distribution,
and science data visualization. Jeff is a
member of the ground data systems and
operations teams for the 2003 Mars
Exploration Rover Mission, and is contributing to the
development of the rover command software suite. He
received his Bachelor’s and Master’s degrees in Electrical
Engineering and Computer Science from MIT. While an
undergraduate, he worked at the MIT Media Laboratory on
data visualization and media transport protocols. He
completed his Master’s thesis on face detection and
recognition at the MIT Artificial Intelligence Laboratory.
He now lives with his wife, Kamala, in La Crescenta,
California.

